Blog

  • Walkie-Talkie

    walkie-talkie, more formally known as a handheld transceiverHT, or handheld radio, is a hand-held, portable, two-way radio transceiver. Its development during the Second World War has been variously credited to Donald Hings, radio engineer Alfred J. GrossHenryk Magnuski and engineering teams at Motorola. First used for infantry, similar designs were created for field artillery and tank units, and after the war, walkie-talkies spread to public safety and eventually commercial and jobsite work.[1]

    Typical walkie-talkies resemble a telephone handset, with a speaker built into one end and a microphone in the other (in some devices the speaker also is used as the microphone) and an antenna mounted on the top of the unit. They are held up to the face to talk. A walkie-talkie is a half-duplex communication device. Multiple walkie-talkies use a single radio channel, and only one radio on the channel can transmit at a time, although any number can listen. The transceiver is normally in receive mode; when the user wants to talk they must press a “push-to-talk” (PTT) button that turns off the receiver and turns on the transmitter. Some units have additional features such as sending calls, call reception with vibration alarm, keypad locking, and a stopwatch.[2][3] Smaller walkie-talkies are also very popular among young children.

    In accordance with ITU Radio Regulations, article 1.73, a walkie-talkie is classified as radio station/land mobile station.

    History

    [edit]

    Assorted two-way FRS and GMRS walkie talkies with hand mic
    SCR-300 military backpack transceiver, nicknamed “walkie talkie”

    Handheld two-way radios were developed by the military from backpack radios carried by a soldier in an infantry squad to keep the squad in contact with their commanders. The Canadian inventor Donald Hings was the first to create a portable radio signaling system for his employer CM&S in 1937. He called the system a “packset”, although it later became known as a “walkie-talkie”. In 2001, Hings received the Order of Canada for the device’s significance to the war effort.[4][5] Hings’ model C-58 “Handie-Talkie” was in military service by 1942, the result of a secret R&D effort that began in 1940.[6]

    Alfred J. Gross, a radio engineer and one of the developers of the Joan-Eleanor system, also worked on the early technology behind the walkie-talkie between 1938 and 1941, and is sometimes credited with inventing it.[7]

    The first device to be widely nicknamed a “walkie-talkie” was developed by the US military during World War II, the backpacked Motorola SCR-300. It was created by an engineering team in 1940 at the Galvin Manufacturing Company (forerunner of Motorola). The team consisted of Marion Bond, Lloyd Morris, Bill Vogel, Dan Noble, who conceived of the design using frequency modulation, and Henryk Magnuski, who was the principal RF engineer.[8]

    SCR-536 US military “handie talkie”, the first hand-held walkie-talkie

    The first handheld walkie-talkie was the AM SCR-536 transceiver from 1941, also made by Motorola, named the Handie-Talkie (HT).[9] The terms are often confused today, but the original walkie-talkie referred to the back mounted model, while the handie-talkie was the device which could be held entirely in the hand. Both devices used vacuum tubes and were powered by high voltage dry cell batteries.

    NoemfoorDutch New Guinea, July 1944. A US soldier (foreground) uses a Handie-Talkie during the Battle of Noemfoor.

    Following World War II, Raytheon developed the SCR-536’s military replacement, the AN/PRC-6. The AN/PRC-6 circuit used 13 vacuum tubes (receiver and transmitter); a second set of thirteen tubes was supplied with the unit as running spares. The unit was factory set with one crystal which could be changed to a different frequency in the field by replacing the crystal and re-tuning the unit. It used a 24-inch whip antenna. There was an optional handset that could be connected to the AN/PRC-6 by a 5-foot cable. An adjustable strap was provided for carrying and support while operating.[10]

    In the mid-1970s, the United States Marine Corps initiated an effort to develop a squad radio to replace the unsatisfactory helmet-mounted AN/PRR-9 receiver and receiver/transmitter handheld AN/PRT-4 (both developed by the US Army). The AN/PRC-68, first produced in 1976 by Magnavox, was issued to the Marines in the 1980s, and was adopted by the US Army as well.

    The abbreviation HT, derived from Motorola’s “Handie-Talkie” trademark, is commonly used to refer to portable handheld ham radios,[11] with “walkie-talkie” often used as a layman’s term or specifically to refer to a toy. Public safety and commercial users generally refer to their handhelds simply as “radios”. Surplus Motorola Handie-Talkies found their way into the hands of ham radio operators immediately following World War II. Motorola’s public safety radios of the 1950s and 1960s were loaned or donated to ham groups as part of the Civil Defense program. To avoid trademark infringement, other manufacturers use designations such as “Handheld Transceiver” or “Handie Transceiver” for their products.

    Uses

    [edit]

    A modern Project 25 capable professional walkie-talkie
    This image shows a Baofeng UV-5R, a small black handheld transceiver. It has a few buttons on the side and numerical buttons and a small LCD display on the front.
    Baofeng UV-5R, a popular inexpensive radio from China
    An Icom IC-F3GS Radio

    Walkie-talkies are widely used in any setting where portable radio communications are necessary, including business, public safety, military, outdoor recreation, and the like, and devices are available at numerous price points from inexpensive analog units sold as toys up to ruggedized (i.e. waterproof or intrinsically safe) analog and digital units for use on boats or in heavy industry. Most countries allow the sale of walkie-talkies for, at least, business, marine communications, and some limited personal uses such as CB radio, as well as for amateur radio designs.

    Walkie-talkies for public safety, and commercial and industrial uses may be part of trunked radio systems, which dynamically allocate radio channels for more efficient use of the limited radio spectrum. Such systems always work with a base station that acts as a repeater and controller, although individual handsets and mobiles may have a mode that bypasses the base station.

    Walkie-talkies, thanks to increasing use of miniaturized electronics, can be made very small, with some personal two-way UHF radio models being smaller than a deck of cards (though VHF and HF units can be substantially larger due to the need for larger antennas and battery packs). In addition, as costs come down, it is possible to add advanced squelch capabilities such as CTCSS (analog squelch) and DCS (digital squelch) (often marketed as “privacy codes”) to inexpensive radios, as well as voice scrambling and trunking capabilities. Some units (especially amateur HTs) also include DTMF keypads for remote operation of various devices such as repeaters. Some models include VOX capability for hands-free operation, as well as the ability to attach external microphones and speakers.

    Consumer and commercial equipment differ in a number of ways; commercial gear is generally ruggedized, with metal cases, and often has only a few specific frequencies programmed into it (often, though not always, with a computer or other outside programming device; older units can simply swap crystals), since a given business or public safety agent must often abide by a specific frequency allocation. Consumer gear, on the other hand, is generally made to be small, lightweight, and capable of accessing any channel within the specified band, not just a subset of assigned channels.

    Military

    [edit]

    Military organizations use handheld radios for a variety of purposes. Modern units such as the AN/PRC-148 Multiband Inter/Intra Team Radio (MBITR) can communicate on a variety of bands and modulation schemes and include encryption capabilities.

    Amateur radio

    [edit]

    Walkie-talkies (also known as HTs or “handheld transceivers”) are widely used among amateur radio operators. While converted commercial gear by companies such as Motorola are not uncommon, many companies such as YaesuIcom, and Kenwood design models specifically for amateur use. While superficially similar to commercial and personal units (including such things as CTCSS and DCS squelch functions, used primarily to activate amateur radio repeaters), amateur gear usually has a number of features that are not common to other gear, including:

    • Wide-band receivers, often including radio scanner functionality, for listening to non-amateur radio bands.
    • Multiple bands; while some operate only on specific bands such as 2 meters or 70 cm, others support several UHF and VHF amateur allocations available to the user.
    • Since amateur allocations usually are not channelized, the user can dial in any frequency desired in the authorized band (whereas commercial HTs usually only allow the user to tune the radio into a number of already programmed channels). This is known as variable frequency operation (“VFO”) mode.
    • Multiple modulation schemes: a few amateur HTs may allow modulation modes other than FM, including AMSSB, and CW,[12][13] and digital modes such as radioteletype or PSK31. Some may have TNCs built in to support packet radio data transmission without additional hardware.

    Digital voice modes are available on some amateur HTs. For example, newer additions to the Amateur Radio service are Next Generation Digital Narrowband (NXDN) and Digital Smart Technology for Amateur Radio or D-STAR. Handheld radios with these technologies have several advanced features, including narrower bandwidth, simultaneous voice and messaging, GPS position reporting, and callsign routed radio calls over a wide-ranging international network.

    As mentioned, commercial walkie-talkies can sometimes be reprogrammed to operate on amateur frequencies. Amateur radio operators may do this for cost reasons or due to the fact that Public Safety grade commercial gear is more solidly constructed and better designed than purpose-built amateur gear that is built to a price.

    Personal use

    [edit]

    This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed.
    Find sources: “Walkie-talkie” – news · newspapers · books · scholar · JSTOR (October 2024) (Learn how and when to remove this message)

    The personal walkie-talkie has become popular also because of licence-free services (such as the U.S. FRS, Europe’s PMR446 and Australia’s UHF CB) in other countries. While FRS walkie-talkies are also sometimes used as toys because mass-production makes them low in cost, they have proper superheterodyne receivers and are a useful communication tool for both business and personal use. The boom in licence-free transceivers has, however, been a source of frustration to users of licensed services which are sometimes interfered with. For example, FRS and GMRS overlap in the United States, resulting in substantial pirate use of the GMRS frequencies. Use of the GMRS frequencies (USA) requires a license; however most users either disregard this requirement or are unaware. Canada reallocated frequencies for licence-free use due to heavy interference from US GMRS users. The European PMR446 channels fall in the middle of a United States UHF amateur allocation, and the US FRS channels interfere with public safety communications in the United Kingdom. Designs for personal walkie-talkies are in any case tightly regulated, generally requiring non-removable antennas (with a few exceptions such as CB radio and the United States MURS allocation) and forbidding modified radios.

    Most personal walkie-talkies sold are designed to operate in UHF allocations, and are designed to be very compact, with buttons for changing channels and other settings on the face of the radio and a short, fixed antenna. Most such units are made of heavy, often brightly colored plastic, though some more expensive units have ruggedized metal or plastic cases. Commercial-grade radios are often designed to be used on allocations such as GMRS or MURS (the latter of which has had very little readily available purpose-built equipment). In addition, CB walkie-talkies are available, but less popular due to the propagation characteristics of the 27 MHz band and the general bulkiness of the gear involved.

    Personal walkie-talkies are generally designed to give easy access to all available channels (and, if supplied, squelch codes) within the device’s specified allocation.

    Personal two-way radios are also sometimes combined with other electronic devices; Garmin‘s Rino series combine a GPS receiver in the same package as an FRS/GMRS walkie-talkie (allowing Rino users to transmit digital location data to each other) Some personal radios also include receivers for AM and FM broadcast radio and, where applicable, NOAA Weather Radio and similar systems broadcasting on the same frequencies. Some designs also allow the sending of text messages and pictures between similarly equipped units.

    While jobsite and government radios are often rated in power output, consumer radios are frequently and controversially rated in mile or kilometer ratings. Because of the line of sight propagation of UHF signals, experienced users consider such ratings to be wildly exaggerated, and some manufacturers have begun printing range ratings on the package based on terrain as opposed to simple power output.

    While the bulk of personal walkie-talkie traffic is in the 27 MHz and 400–500 MHz area of the UHF spectrum, there are some units that use the “Part 15” 49 MHz band (shared with cordless phones, baby monitors, and similar devices) as well as the “Part 15” 900 MHz band; in the US at least, units in these bands do not require licenses as long as they adhere to FCC Part 15 power output rules. A company called TriSquare is, as of July 2007, marketing a series of walkie-talkies in the United States, based on frequency-hopping spread spectrum technology operating in this frequency range under the name eXRS (eXtreme Radio Service—despite the name, a proprietary design, not an official allocation of the US FCC). The spread-spectrum scheme used in eXRS radios allows up to 10 billion virtual “channels” and ensures private communications between two or more units.

    Recreation

    [edit]

    This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed.
    Find sources: “Walkie-talkie” – news · newspapers · books · scholar · JSTOR (October 2024) (Learn how and when to remove this message)
    An inexpensive children’s walkie-talkie

    Low-power versions, exempt from licence requirements, are also popular children’s toys such as the Fisher Price Walkie-Talkie for children illustrated in the top image on the right. Prior to the change of CB radio from licensed to “permitted by part” (FCC rules Part 95) status, the typical toy walkie-talkie available in North America was limited to 100 milliwatts of power on transmit and using one or two crystal-controlled channels in the 27 MHz citizens’ band using amplitude modulation (AM) only. Later toy walkie-talkies operated in the 49 MHz band, some with frequency modulation (FM), shared with cordless phones and baby monitors. The lowest cost devices are very simple electronically (single-frequency, crystal-controlled, generally based on a simple discrete transistor circuit where “grown-up” walkie-talkies use chips), may employ superregenerative receivers, and may lack even a volume control, but they may nevertheless be elaborately decorated, often superficially resembling more “grown-up” radios such as FRS or public safety gear. Unlike more costly units, low-cost toy walkie-talkies may not have separate microphones and speakers; the receiver’s speaker sometimes doubles as a microphone while in transmit mode.

    An unusual feature, common on children’s walkie-talkies but seldom available otherwise even on amateur models, is a “code key”, that is, a button allowing the operator to transmit Morse code or similar tones to another walkie-talkie operating on the same frequency. Generally the operator depresses the PTT button and taps out a message using a Morse Code crib sheet attached as a sticker to the radio. However, as Morse Code has fallen out of wide use outside amateur radio circles, some such units either have a grossly simplified code label or no longer provide a sticker at all.

    In addition, Family Radio Service UHF radios will sometimes be bought and used as toys, though they are not generally explicitly marketed as such (but see Hasbro‘s ChatNow line, which transmits both voice and digital data on the FRS band).

    Some cellular telephone networks offer a push-to-talk handset that allows walkie-talkie-like operation over the cellular network, without dialing a call each time. However, the cellphone provider must be accessible.

    Specialized uses

    [edit]

    This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed.
    Find sources: “Walkie-talkie” – news · newspapers · books · scholar · JSTOR (October 2024) (Learn how and when to remove this message)
    USDA grain inspector with RCA TacTec walkie-talkie, New Orleans, 1976

    In addition to land mobile use, waterproof walkie talkie designs are also used for marine VHF and aviation communications, especially on smaller boats and ultralight aircraft where mounting a fixed radio might be impractical or expensive. Often such units will have switches to provide quick access to emergency and information channels. They are also used in recreational UTVs to coordinate logistics, keep riders out of the dust and are usually connected to an intercom and headsets

    Intrinsically safe walkie-talkies are often required in heavy industrial settings where the radio may be used around flammable vapors. This designation means that the knobs and switches in the radio are engineered to avoid producing sparks as they are operated.

    Software emulation

    [edit]

    A variety of mobile apps exist that mimic a walkie-talkie/push-to-talk style interaction. They are marketed as low-latency, asynchronous communication. The advantages touted over two-way voice calls include: the asynchronous nature not requiring full user interaction (like SMS) and it is voice over IP (VOIP) so it does not use minutes on a cellular plan.

    Applications on the market that offer this walkie-talkie style interaction for audio include Hytera,[14] VoxerZelloOrion LabsMotorola Wave, and HeyTell, among others.[15]

    Other smartphone-based walkie-talkie products are made by companies like goTennaFantom Dynamics and BearTooth, and offer a radio interface.[citation needed] Unlike mobile data dependent applications, these products work by pairing to an app on the user’s smartphone and working over a radio interface.[16]

    Accessories

    [edit]

    There are various types of accessories available for walkie-talkies such as rechargeable batteries, drop-in rechargers, multi-unit rechargers for charging as many as six units at a time, and an audio accessory jack that can be used for headsets or speaker microphones. Newer models allow the connection to wireless headsets via Bluetooth. Some models also came up with the wifi integration such as Motorola XIRP 8600i series.[17]

  • Electric Toothbrush

    An electric toothbrushmotorized toothbrush, or battery-powered toothbrush is a toothbrush that makes rapid automatic bristle motions, either back-and-forth oscillation or rotation-oscillation (where the brush head alternates clockwise and counterclockwise rotation), in order to clean teeth. Motions at sonic speeds or below are made by a motor. In the case of ultrasonic toothbrushesultrasonic motions are produced by a piezoelectric crystal. A modern electric toothbrush is usually powered by a rechargeable battery charged through inductive charging when the brush sits in the charging base between uses.

    Electric toothbrushes can be classified according to the frequency (speed) of their movements as power, sonic or ultrasonic toothbrushes, depending on whether they make movements that are below, in or above the audible range (20–20,000 Hz or 2400–2,400,000 movements per minute), respectively.

    History

    [edit]

    A photo of a Motodent electric toothbrush on top of a box.
    A Motodent electric toothbrush. A patent for this toothbrush was filed in 1937.

    The earliest example of an electric toothbrush was first produced by Tomlinson Moseley. Sold as the Motodent, a patent was filed by his company, Motodent Inc. on December 13, 1937.[1] In Switzerland in 1954 Dr. Philippe Guy Woog invented the Broxodent.[2] Woog’s electric toothbrushes were originally manufactured in Switzerland (later in France) for Broxo S.A. The device plugged into a standard wall outlet and ran on line voltage. Electric toothbrushes were initially created for patients with limited motor skills and for orthodontic patients (such as those with braces).[3]

    The Broxo Electric Toothbrush was introduced in the US by E. R. Squibb and Sons Pharmaceuticals in 1960.[4] After introduction, it was marketed in the US by Squibb under the names Broxo-Dent or Broxodent.[4] In the 1980s Squibb transferred distribution of the Broxodent line to the Somerset Labs division of Bristol-Myers Squibb.[5]

    The General Electric automatic toothbrush was introduced in the early 1960s;[6] it was cordless, with rechargeable NiCad batteries and although portable, was rather bulky, about the size of a two-D-cell flashlight handle.[7] NiCad batteries of this period suffered from the memory effect. The GE automatic toothbrush came with a charging stand that held the hand piece upright; most units were kept in the charger, which is not the best way to get maximum service life from a NiCad battery. Also, early NiCad batteries tended to have a short lifespan. The batteries were sealed inside the GE device, and the whole unit had to be discarded when the batteries failed.

    The use of an AC line voltage appliance in a bathroom environment was problematic. By the early 1990s Underwriter Laboratories (UL) and Canadian Standards Association (CSA) no longer certified line-voltage appliances for bathroom use. Newer appliances had to use a step-down transformer to operate at low voltage (typically 12, 16 or 24 volts). Wiring standards in many countries require that outlets in bath areas must be protected by a RCD/GFCI device (e.g., required in the US since the 1970s on bathroom outlets in new construction).

    By the 1990s there were problems with safety certification of Broxo’s original design. Further, improved battery-operated toothbrushes were providing formidable competition.[citation needed]

    The first ultrasonic toothbrush, first called the Ultima and later the Ultrasonex, was patented in the US in 1992, the same year the FDA gave it approval for daily home use. Initially, the Ultima worked only on ultrasound, but a few years later, a motor was added to give the Ultrasonex brush additional sonic vibration. Today, several ultrasonic toothbrushes simultaneously provide both ultrasound and sonic vibration. In more modern times, electric toothbrushes have been used as a substitute for vibrators for those who wish to avoid embarrassment.[8]

    The negative environmental impact of electric toothbrushes when compared with manual toothbrushes has been established.[9]

    Types

    [edit]

    Electric toothbrush

    Electric toothbrushes can be classified according to their type of action:

    • Side to side vibration, which has a brush head action that moves laterally from side to side.
    • Counter oscillation, which has a brush action in which adjacent tufts of bristles (usually six to 10 in number) rotate in one direction and then the other, independently, with each tuft rotating in the opposite direction to that adjacent to it.
    • Rotation oscillation, which has a brush action in which the brush head rotates in one direction and then the other.
    • Circular, which has a brush action in which the brush head rotates in one direction only.
    • Ultrasonic, which has a brush action where the bristles vibrate at ultrasonic frequencies (> 20 kHz).
    • Ionic, which has a brush that aims to impart an electrical charge to the tooth surface with the intent of disrupting the attachment of dental plaque.[10]

    For some vibrating toothbrush designs, a brushing technique similar to that used with a manual toothbrush is recommended, whereas with brushes with a spinning head the recommended cleaning technique is to simply move the brush slowly from tooth to tooth.[11]

    Electric toothbrushes can also be classified according to the speed of their movements as standard power toothbrushes, sonic toothbrushes or ultrasonic toothbrushes. If the motion of the toothbrush is sufficiently rapid to produce a hum in the audible frequency of human range (20 Hz to 20,000 Hz), it can be classified as a sonic toothbrush. Any electric toothbrush with movement faster than this limit can be classified as an ultrasonic toothbrush. Certain ultrasonic toothbrushes, such as the Megasonex and the Ultreo, have both sonic and ultrasonic movements.[12]

    Oscillating rotating

    [edit]

    Oral-B iO toothbrush

    The oscillating rotating toothbrush is a type of electric toothbrush which was introduced by Oral-B in the 1990s.[13][14][15][16][17] This type of toothbrush is not shaped like a conventional manual toothbrush. Instead, it is made of a small round brush head that oscillates and rotates to remove plaque. The shape of the brush head is very similar to the prophylaxis hand piece used by dental professionals to remove plaque in the dental office.[18] This design enables the bristles to reach further into the hard-to-reach areas between the teeth to remove plaque. Some versions of the oscillating rotating toothbrush also involve a pulsating motion which enables a more three dimensional clean.[citation needed]

    The Oral-B iO toothbrush has a linear magnetic drive system.[19] This system allows the concentration of energy to be at the tip of the brush bristles while using the oscillating rotating motion.[19] The brush also allows for 3D tracking using artificial intelligence that connects the toothbrush with an app.[19] This technology enables the user to have instant feedback on their brushing efficacy and can track the data if the user wishes to bring the information to their dental professional for more personalized oral health instruction and education. Furthermore, the Oral-B iO toothbrush also has a smart pressure sensor which is electronically calibrated to let the user know if they are brushing with too much pressure, or not enough, and automatically adapts the oscillation speed to protect the teeth and gums when excess pressure is applied.[19]

    The safety of oscillating rotating toothbrushes has also been studied. Oscillating rotating toothbrushes are proven to be safe as compared to manual toothbrushes and are safe for both the hard and soft tissues of the oral cavity.[20]

    Sonic

    [edit]

    Sonic toothbrush (Sonicare)

    Sonic toothbrushes are a subset of electric toothbrushes with movement that is fast enough to produce vibration in the audible range. Most modern rechargeable electric toothbrushes from brands such as Sonicare, FOREO, and Oral-B fall into this category and typically have frequencies that range from 200 to 400 Hz, that is 12,000–24,000 oscillations or 24,000–48,000 movements per minute. Because sonic toothbrushes rely on sweeping motion alone to clean the teeth, the movement that they provide is often high in amplitude, meaning that the length of the sweeping movements that they make is large. One study found that using a sonic toothbrush causes less abrasion to the gum when compared to the manual toothbrush.[21]

    Ultrasonic

    [edit]

    Ultrasonic toothbrush (Megasonex)

    Main article: Ultrasonic toothbrush

    The newest developments in this field are ultrasonic toothbrushes, which use ultrasonic waves to clean the teeth. In order for a toothbrush to be considered “ultrasonic” it has to emit a wave at a minimum frequency of 20,000 Hz or 2.4 million movements per minute. Typically, ultrasonic toothbrushes approved by the U.S. Food and Drug Administration (FDA) operate at a frequency of 1.6 MHz, which translates to 192 million movements per minute.

    Ultrasonic toothbrushes emit vibrations that are very high in frequency but low in amplitude. These vibrations break up bacterial chains that make up dental plaque and remove their methods of attachment to the tooth surface up to 5 mm below the gum line.[22]

    Some ultrasonic toothbrushes, such as the Emmi-Dent, provide only ultrasonic motion. Other ultrasonic toothbrushes, such as the Ultreo and the Megasonex, provide additional sonic vibration ranging from 9,000 to 40,000 movements per minute, comparable to a sonic toothbrush, in order to provide additional sweeping motion which facilitates removal of food particles and bacterial chain remnants. The sonic vibration in these ultrasonic toothbrushes may be lower in amplitude than that found in a comparable sonic toothbrush because the bacterial chains do not need to be removed through sonic vibration, simply swept away, as they have already been broken up by the ultrasound.

    Because of the similarity of the terms “ultrasonic” and “sonic”, there is some confusion in the marketplace and sonic toothbrushes are frequently mislabeled as ultrasonic ones. A toothbrush operating at a frequency or vibration of less than 20,000 Hz is a “sonic” toothbrush. It is called “sonic” because its operating frequency, for example 31,000 movements per minute, is within the human hearing range of between roughly 20 Hz to about 20,000 Hz. Only a toothbrush that emits ultrasound, or vibration at a frequency greater than the upper limit of human hearing, can be called an “ultrasonic” toothbrush.

    Effectiveness

    [edit]

    In 2014, a Cochrane review demonstrated that power toothbrushes remove more plaque and reduce gingival inflammation more than manual toothbrushes.[10] This review showed electric toothbrushes had greater effectiveness over manual ones. For example, plaque build-up and gingival inflammation were reduced by 11% and 6% respectively after one to three months of use.[10] After three months of use, the reduction observed was even greater – 21% reduction in plaque and 11% reduction in gingival inflammation.[10] Although the scale of these differences in a clinical setting remains questionable,[10] other reviews have reached similar conclusions.[23][24] Another large review of studies also concluded that power toothbrushes were more effective in removing plaque than manual brushes for children.[25] For patients with limited manual dexterity or where difficulty exists in reaching rear teeth, electric toothbrushes may be especially beneficial.[26][27]

    With regards to the effectiveness of different electric toothbrushes, the oscillation rotation models have been found to remove more plaque than manual toothbrushes.[28][18][17] More specific studies have also been conducted demonstrating oscillating rotating toothbrush effectiveness to be superior to manual toothbrushes for patients undergoing orthodontic treatment.[29][30] Only the oscillating rotating power toothbrush was able to consistently provide statistically significant benefit over manual toothbrushes in the 2014 Cochrane Review.[10] This suggests that oscillating rotating power toothbrushes may be more effective than other electric toothbrushes. More recent evidence also supports this as new studies suggest that oscillating rotating toothbrushes are more effective than high frequency sonic power toothbrushes.[31][13][32] Overall, oscillating rotating toothbrushes are effective in reducing gingival inflammation and plaque.[33]

    Other factors that influence effectiveness amongst electric toothbrushes involve factors such as the amount of time spent brushing and the condition of the brush head. Manufacturers recommend that heads be changed every three months or as soon as the brush head has visibly deteriorated.[34][35]

    Power source and charging

    [edit]

    Modern electric toothbrushes run on low voltage, 12 V or less. A few units use a step-down transformer to power the brush, but most use a battery, usually but not always rechargeable and non-replaceable, fitted inside the handle, which is hermetically sealed to prevent water damage. While early NiCd battery toothbrushes used metal tabs to connect with the charging base, some toothbrushes use inductive charging.

    Environmental concerns

    [edit]

    According to Friends of the Earth, “Disposable electric toothbrushes are one example of a terrible product … it’s virtually impossible to separate out the tech from the batteries and plastic casing which means valuable and often toxic materials are dumped in landfill or burnt in incinerators.”[36] A study published in British Dental Journal found climate change potential of the electric toothbrush was 11 times greater than the bamboo toothbrush. The bamboo toothbrush was, however, not the most environmentally sustainable toothbrush, contrary to popular belief because using them just stops land from being put to better use such as helping biodiversity, or in growing forests to offset carbon emissions. A plastic manual replaceable head toothbrush was probably the best, according to the study.[9]

    Optional features

    [edit]

    Timer

    [edit]

    Many modern electric toothbrushes have a timer that buzzes, or briefly interrupts power, typically after two minutes, and sometimes every 30 seconds. This is associated with a customary recommendation to brush for two minutes, 30 seconds for each of the four quadrants of the mouth.

    Display

    [edit]

    Some electric toothbrushes have LCD screens that show brushing time and sometimes smiley face icons or other images to encourage optimal brushing. These features could encourage people to brush more accurately.[37]

    Pressure sensor

    [edit]

    Brushing teeth too hard causes enamel and gum damage. Most modern top-end sonic toothbrushes come with a pressure sensor, which prevents users from brushing too aggressively. There are two types of pressure sensors. Some sensors produce a sound warning and some immediately stop movements of the sonic toothbrush when it is used too aggressively. Some electric brushes, such as the Oral-B oscillating rotating brush, simultaneously coach the user to brush with optimal pressure during the brushing experience itself using AI and Bluetooth technology.

    Ultrasound indicator

    [edit]

    Because ultrasonic frequencies are beyond the audible range and the amplitude of movement emitted by an ultrasonic toothbrush is typically too small to be perceived, the ultrasound is imperceptible to humans and it may not be apparent that a brush running if pure ultrasound is turned on. Ultrasonic toothbrushes may include an indicator to notify the user that ultrasound is being emitted.

    Bluetooth

    [edit]

    Bluetooth connectivity enables data to be transmitted from an electric toothbrush to another Bluetooth device, such as a smartphone. The brush can send data to a mobile app such as how long it has been brushing for and if too much pressure has been applied when brushing. The app can in turn send data back to the brush such as changing the cleaning modes available, and cleaning time. The sharing of data between toothbrush and smartphone is intended to assist the user in creating better brushing technique and habits. This technology enables coaching for the user as it tracks where the user brushes, how long in each area, and consequently, can identify areas where the user commonly misses. Electric toothbrush models that currently utilise Bluetooth include the Oral-B Pro 6000, Pro 6500, Pro 7000 and Genius 9000, Oral-B iO as well as Phillips Sonicare Diamond Clean Smart.

    Cleaning modes

    [edit]

    Most sonic toothbrushes come with different cleaning modes and intensity levels. Cleaning modes are designed for special types of cleaning efficiency. Some of the most well known are Sensitive, Daily care, Whitening and Tongue cleaning.

    Certain toothbrushes that offer both ultrasonic and sonic motion allow for the intensity of the sonic motion to be reduced, or even for the sonic motion to be turned off entirely so that only ultrasound is emitted. Since ultrasound movements are very low in amplitude, this setting may be indicated for patients who may not be suitable candidates for typical sonic or power toothbrush vibration but need the additional cleaning power of an ultrasonic toothbrush, such as patients who have recently undergone periodontal surgery.